$\begin{aligned} & \begin{array}{l} \text { Chemistry \# of atoms in exactly } \\ \text { The Mole } \rightarrow \text { 信 } \\ \\ 12.000 \mathrm{~g} \text { of } 12 \mathrm{C} \end{array} \end{aligned}$	Name: Xer
The Mole Comparing Sizes 2. Blocks A and B both have a mass of 50 g , but block A has a volume of $50 \mathrm{~cm}^{3}$ while block B has a volume of $400 \mathrm{~cm}^{3}$. Which has more particles? Unknows size= no of particle companson - Blocks C and D are both $150 \mathrm{~cm}^{3}$, but block C has a mass of 10 g while block D has a mass of 50 g . Which has more particles? Unknown mass = no of particle comparison What is a Molle? 1 pair of socks $=\frac{2}{2}$ socks 1 score of years $=20$ years 1 dozen eggs $=12$ eggs 1 gross of goblins $=144$ goblins 1 mole of an item = \qquadmines items 1 great gross of peanuts $=1228$ peanuts	Practice A mole of pennies: 6.022×10^{23} A mole of grains of sand: \qquad A mole of hockey pucks: \qquad
Molar Mass - Molar Mass - the mass of one mole of a pure substance - Units - $\frac{\mathrm{g}}{\mathrm{mol}}$ - Is found on the periodic table rounded to two (2) decimal places - C: 12.01 - $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$: $\begin{aligned} & +C=6 \times 12.01 \\ & +\begin{array}{l} c=12 \times 1.01 \\ 0=6 \times 16.00 \\ 0 \quad \text { Calcium Hydroxide: } \mathrm{Ca}(01){ }_{2} \\ \\ 40.08+(2 \times 16.00)+(2.1 .01)=74.109 / \mathrm{mal} \end{array} \end{aligned}$	Practice: $\begin{aligned} & \text { 1. } \mathrm{Mg}-24.319 / \mathrm{mol} \\ & \text { 2. } \mathrm{MgCl}_{2}- \\ & 24.31+(2.35 .45)=95.2191 \mathrm{~mol} \end{aligned}$ 3. PbSO_{4} - $207.20+32.06+(4 \times 16.00)=303.269 / m 01$ 4. A 3.45 g sample of an element contains 0.150 mol of atoms.

Molar Vormme
1 mole $=6.022 \times 10^{23}$ molecules $=22.4 \mathrm{~L}(@ \mathrm{STP})$
STP= standard temp tpiessure $0^{\circ} \mathrm{C}+1$ atm
Conversion Factor: $\frac{1 \text { mole }}{22.4 \mathrm{~L}}$ or $\frac{22.4 L}{1 \text { mole }}$

1. What volume will 7.29 moles of CO_{2} gas occupy at STP?

$$
7.29 \text { moves } \times \frac{22.4 \mathrm{~L}}{1 \text { mol }}=\frac{163.296}{4163 \mathrm{LCO}_{2} \text { asti }}
$$

2. What mass of CO_{2} gas occupies a volume of 100 . Liters at STR?

Mass Percent Composition

1. Find the molar mass of the compound
2. Calculate the mass due to the component in the compound you are solving for.
3. Divide the mass due to the component by the total molar mass of the compound.

$$
5 N=\frac{\text { mass of } X}{\text { 4wotentar mass }} \times 100 \%
$$

molar
4. Multiply by 100.

Find the \% composition of Nitrogen in $\mathrm{NH}_{4} \mathrm{NO}_{3}$.
(1) $14.01 \times 2 N=28.02$
(2) $(14.02 \times 2)+(4 \cdot 1.01)+(3 \cdot 16.00)=80.08$
(3) $\frac{28.02}{80.08} \times 100=35.00 \%$
practice

1. What volume will 2.22 moles of CO_{2} gas occupy at STP?

$$
2.22 \text { mules } \mathrm{CO}_{2} \times \frac{22.4 \mathrm{~L}}{\mathrm{~m} / \mathrm{O}}=\frac{49.728}{49.71}
$$

$49.7 \mathrm{LCO}_{2}$ a STP
2. What mass of SO_{2} gas occupies a volume of 47.9 Liters at STP?

$$
47.9 \mathrm{~L}_{\times} \times \frac{1 \mathrm{~mol}}{22.4 \mathrm{~L}} \times \frac{64.07 \mathrm{~g}}{1 \mathrm{~mol}}=137.006
$$

Practice: Determine the percent composition of each element in Calcium Phosphate. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
Ca

Empirical Formula and Molecular Formula

Empirical Formula: \qquad form in which a compound is written
-represents the simplest form where there is the Lowest whole number \qquad ratio of atoms in the compound

Molecular Formula: the \qquad formula of a compound
Sometimes they are the same

Practice

Molecular Formula	Empirical Formula		Molecular Formula	Empirical Formula
$\mathrm{C}_{5} \mathrm{H}_{3}$	$\mathrm{C}_{5} \mathrm{H}_{3}$	$*$	$\mathrm{C}_{5} \mathrm{H}_{8}$	$\mathrm{C}_{5} \mathrm{Ha}$
$\mathrm{C}_{8} \mathrm{H}_{8}$	CH		$\mathrm{C}_{2} \mathrm{H}_{10}$	CH_{5}
$\mathrm{C}_{2} \mathrm{H}_{4}$	CH 2	$* \mathrm{C}_{20} \mathrm{H}_{48} \mathrm{O}_{8}$	$\mathrm{C}_{10} \mathrm{H}_{49} \mathrm{O}_{6}$	
$\mathrm{H}_{2} \mathrm{O}_{2}$	HO		$\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2}$	$\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$
		17	$\mathrm{C}_{102} \mathrm{H}_{34} \mathrm{~N}_{17} \mathrm{O}_{17} \mathrm{~F}_{34}$	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NOF}_{2}$

Using Percent Composition to Determine the Empirical Formula

1. Assume 100 -gram sample (if percent)
2. Convert from grams to moles Using molar mass
3. Divide by the smallest number of moles
4. Write the formula

Practice

Determine the empirical formula of a compound containing 32.38% sodium, 22.65% sulfur, and 44.99% oxygen.

$$
\mathrm{Na}+32.38 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{22.99 \mathrm{~g}}=1.408 \mathrm{~mol} / 0.7063=1.99 \rightarrow 2
$$

$$
S \rightarrow 22.65 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{32.07 \mathrm{~g}}=\begin{gathered}
0.7063 \mathrm{~ms} 1 / 0.7063=1 \\
\text { Gosmallest }
\end{gathered}
$$

$$
0 \rightarrow 44.99 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{16.00 \mathrm{~g}}=2.812 \mathrm{~mol} / 0.7063=3.98 \rightarrow 4
$$

Using Percent Composition to Determine the Empirical Formula determine the empirical formula of a 10.150 g sample of a cor......ound *If the ratios are not whole numbers, multiply all the numbers by a small containing phosphorus and oxygen with a phosphorus content of 4.433 whole number to get whole numbers.

Fractional Number	Multiply by this
$.20 \% .40 \% 80$	5
$.25 / .75$	4
$.33: .66$	3
.50	2

g.

$$
\begin{aligned}
& P_{\rightarrow+4.433 \mathrm{~g} \times \frac{(2)}{30.97 \mathrm{~g}}=0.1431 \mathrm{~mol} / 0.1431}=\frac{(3.5)}{\times 2=} \\
& \begin{aligned}
& 0+10.150 \\
&-4.433 \\
&-5.717 \mathrm{~g} \times \frac{1 \mathrm{mo1}}{16.00 \mathrm{~g}}=0.3573 \mathrm{~mol} / 0.1431=2.5 \times 2 \\
&=5
\end{aligned}
\end{aligned}
$$

Determining the Molecular Formula

1) Determine Empirical Formula
2) Determine the molar mass of the empirical formula
3) Divide molecular mass by empirical formulas mass to determine how many times greater the molecular mass is than the empirical formula.
4) Multiply the empirical formula subscripts by the answer

The empirical formula from the previous problem was $\mathrm{P}_{2} \mathrm{O}_{5}$. Experimentation shows that the molar mass of this compound is 283.89 $\mathrm{g} / \mathrm{mol}$. What is the molecular formula of the compound?

$$
\begin{aligned}
& (2)(2 \times 3097)+(5 \times 16.00)=141.94 \\
& \begin{aligned}
& \text { (3) } \frac{288.89}{141.94}= 2\left(\mathrm{P}_{2} \mathrm{O}_{5}\right) \\
& \mathrm{P}_{4} \mathrm{O}_{10}
\end{aligned}
\end{aligned}
$$

Either an empirical formula or percent composition problem

Practice

1. Write the formula for the following
a. Copper (II) Sulfate * Pentahydrate $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ sodium carbonate decahyorate
2. Find the mass percentage of water in $\mathrm{CuSO}_{4}{ }^{*} 5 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& \frac{\text { Watermass }}{\text { totalmass } \times 100 \quad} \begin{aligned}
& 63.55+32.07+(4.16 .00) \\
&+(5.18 .01) \\
&=217.6091 \mathrm{~mol} \\
& \begin{array}{ll}
\frac{90.0591 \mathrm{~mol}}{217.6091 \mathrm{~mol}} \times 100
\end{array}
\end{aligned}
\end{aligned}
$$

$$
41,387
$$

3. Write the formula for a 5.0 g sample of a hydrate of BaCl_{2} that was heated and only 4.26 g of the anhydrous salt remained.

$$
\begin{aligned}
\text { Hydrate } & =5.0 \mathrm{~g} \\
\mathrm{BaCl}_{2} & =\frac{4.2 \mathrm{gg}}{0.74 \mathrm{~g}} \\
\text { Water } & =\begin{aligned}
4.26 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{208.23 \mathrm{~g}} & =0.02046 / 0.02046 \\
\mathrm{BaCl}_{2} & =1
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{r}
H_{2} \mathrm{O} 0.74 \mathrm{~g} \cdot \frac{1 \mathrm{~mol}}{18.01 \mathrm{~g}}=0.04109 / 0.02046 \\
=2
\end{array}
$$

