Chemistry # of cotoms in exactly The Mole > 12.0009 of 12C	Name: Key
The Mole Comparing Sizes Blocks A and B both have a mass of 50 g, but block A has a volume of 50 cm³ while block B has a volume of 400 cm³. Which has more particles? UNUNOWS SIZE = NO Blocks C and D are both 150 cm², but block C has a mass of 10 g while block D has a mass of 50 g. Which has more particles? UNUNOWN WASS = NO A particle Comparison What is a Mole? I pair of socks = 2 socks I dozen eggs = 12 eggs I great score of pennies = 100 pennies I great gross of goblins = 144 goblins I great gross of peanuts = 1228 peanuts Comparison I mole of an item = items Comparison Comparison I mole of an item = items Comparison Comparison I mole of an item = items	A mole of pennies: A mole of grains of sand: A mole of hockey pucks:
Molar Mass - the mass of one mole of a pure substance of Units - $\frac{3}{1000}$ o Is found on the periodic table rounded to $\frac{1}{1000}$ decimal places o C: $\frac{12.01}{12.06}$ $\frac{12.01}{12.00}$ $\frac{12.101}{12.00}$ $\frac{12.101}{12.00}$ $\frac{12.100}{1000}$ Calcium Hydroxide: $\frac{12.100}{1000}$ $\frac{12.100}{1000}$	Practice: 1. $Mg - 24.319 mol$ 2. $MgCl_2 - 24.31 + (2.35.45) = 95.219 mol$ 3. $PbSO_4 - 267.20 + 32.06 + (4 \times 16.00) = 303.269 mol$ 4. A 3.45 g sample of an element contains 0.150 mol of atoms. What is this element? 3. 45 g 239 mol \rightarrow periodic table mass - $Na \rightarrow$ Sodium

Molar Volume

1 mole = 6.022 x 1023 molecules = 22.4 L (@ STP)

STP= Standard temp & pressure 0'C 1 atm

Conversion Factor: 1 mole 0, 22.4L Imole

1. What volume will 7.29 moles of CO₂ gas occupy at STP?

2. What mass of CO₂ gas occupies a volume of 100. Liters at STP?

Mass Percent Composition

- 1. Find the molar mass of the compound
- 2. Calculate the mass due to the component in the compound you are solving for.
- 3. Divide the mass due to the component by the total molar mass of the compound.

 $\%X = \frac{mass \text{ of } X}{molecular \text{ mass}} \times 100\%$ mol q.r

4. Multiply by 100.

Find the % composition of Nitrogen in NH₄NO₃.

$$\begin{array}{c} (3) \ \, \frac{28.02}{80.08} \times 100 = 35.00\% \\ \end{array}$$

ractice

1. What volume will 2.22 moles of CO₂ gas occupy at STP?

2. What mass of SO₂ gas occupies a volume of 47.9 Liters at STP?

Practice: Determine the percent composition of each element in Calcium Phosphate.

Total:
$$(3.40.08) + (2.30.97) + (8.16.00) = 310.1891$$
 $(2.30.97) + (8.16.00) = 310.1891$ $(2.30.24) + (2.30.97) + (8.16.00) = 310.1891$ $(2.30.24) + (2.30.97)$

Empirical Formula and Molecular Formula					
Empirical Formula: SimpleSt form in which a compound is written					
-represents the simplest form where there is the \(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\					
Molecular Formula: theformula of a compound *Sometimes they are the same*					

Practice

	Molecular Formula	Empirical Formula		Molecular Formula	Empirical Formula
F	C₅H ₈	C ₅ H ₃	*	rC₅H _g	CsHq
	C ₈ H ₆	CH		C ₂ H ₁₀	CHS
	C ₂ H ₄	CH2	*	C ₂₀ H ₄₉ O ₈	C10 H49 06
	H ₂ O ₂	HO		C ₂ H ₈ N ₄ O ₂	CHy N20
			-17	C ₁₀₂ H ₅₁ N ₁₇ O ₁₇ F ₃₄	C6H3 NOFZ

Using Percent Composition to Determine the Empirical Formula

- 1. Assume 100-gram sample (if percent)
- 2. Convert from grams to moles USING MOICI mass
- 3. Divide by the smallest number of moles
- 4. Write the formula

Practice

Determine the empirical formula of a compound containing 32.38% sodium, 22.65% sulfur, and 44.99% oxygen.

4) Na2S04

Using Percent Composition to Determine the Empirical Formula *If the ratios are not whole numbers, multiply all the numbers by a small containing phosphorus and oxygen with a phosphorus content of 4.433

whole number to get whole numbers.

Fractional Number	Multiply by this	
.20/.40/.80	5	
.25/.75	4	
.33/.66	3	
.50	2	

etermine the empirical formula of a 10.150 g sample of a compound

$$P_{+}4.433g \times \frac{1001}{30.97g} = 0.1431001 / 0.1431 = 1 \times 2 = 0.10.150$$
 $-4.433 \cdot 5.717g \times \frac{1001}{16.00g} = 0.3573001 / 0.1431 = 2.5 \times 2 = 5$

Determining the Molecular Formula

- Determine Empirical Formula 1)
- Determine the molar mass of the empirical formula 2)
- 3) Divide molecular mass by empirical formulas mass to determine how many times greater the molecular mass is than the empirical formula.
- Multiply the empirical formula subscripts by the answer 4)

The empirical formula from the previous problem was P₂O₅ Experimentation shows that the molar mass of this compound is 283.89 g/mol. What is the molecular formula of the compound?

$$(3) \frac{283.89}{141.94} = 2 (P_2 O_5)$$

$$P_4 O_{10}$$

Hydrates

Set number of \(\frac{\mathcal{Q} \tau \cong}{\mathcal{Q}} \) molecules loosely bonded to an ionic compound

<u>De hydrahna</u> heating removes the water

annydrous Salt- the dehydrated compound left after heating

Naming: Ionic Compound Plusix hydrate

1	2	3	4	5
mono	di	tri	tetra	penta
6	7	8	9	10
Nexa	hepta	Octa	nona	deca

^{*}Either an empirical formula or percent composition problem*

Practice

1. Write the formula for the following

a. Copper (II) Sulfate * Pentahydrate (u) 04 · 5 H20

b. Na2CO3 10 H2O sodium carbonate · decanydrate

2. Find the mass percentage of water in CuSO₄* 5H₂O

3. Write the formula for a 5.0 g sample of a hydrate of BaCl₂ that was heated and only 4.26 g of the anhydrous salt remained.