Chemistry Review

}

1. Identify each description as an acidic solution (A), a basic solution (B) or a neutral solution (N). りしょう 1. tastes bitter $\underline{\mathcal{A}}_2$. turns cabbage juice pink G 3. neutralizes NaOH b_4 . has a pH > 7.0 G 5. tastes sour ____6. [H+] = 1.0 ×10⁻⁴ M 8. Ammonia water 67. neutralizes HCl <u>N</u> 9. Has a pOH = 7.0 $\underline{\mathcal{B}}$ 10.turns cabbage juice blue/green $\underline{\mathcal{B}}$ 11.[OH–] = 1.0 × 10⁻¹ M <u>______</u>12. Has [H+] > [OH–] 2. What does pH measure? how acidic basic amount of (H+) + OH- ions 3. What is the difference between how Bronsted-Lowry define acids and bases versus Lewis? acid to accept election pair, donoted Ht (BK) buse - accept HR, donote electron pair (BZ) (D) 4. Identify the acid(s) and base(s) in the following reaction: → HSO₄ + H₃O⁺ C. base C. arid H₂SO₄ H₂O + buse. acid

Name: Vy

5. Complete the following charts:

рН	рОН	[H ⁺]	[OH ⁻]	Acid/Base
2	12	1 ~ 10-2	1× 10-12	acid
3	1)	1 x 10 ⁻³	1 < 10-"	acid
10	4	1x 10-10	10-4	base
1	13	1 = 10 - 1	(× 10 ⁻¹³	acid
13		1+10-13	1 × ×	buse
9 .	5	1× 10-9	1 x 10 ⁻¹ / 10 ⁻⁵	base
8	6	1 x 10 ⁻⁸	1 × 10-6	base

рН	рОН	[H ⁺]	[OH]	Acid/Base
114	2.6	3.98+10-12	2.51+10-3	base
5.8	8.2	1.58×10-6	6.31×10-9	oud
9.9	4.1	1,26+10-10	7.94×10-5	base
1,30	12.7	5.0 x 10 ⁻²	2 + 10-13	acid
4.82	9.18	1.50 + 10-5		acid
16.10	3.9	8.00 x 10 ⁻¹¹	1.26+10-4	base

6. How many liters of 3.4 M HI will be required to reach the equivalence point with 2.1 L of 2.0 M KOH?

$$V_{A}^{*}$$
 V_{B}^{*} ZIL
 M_{H+}^{*} 3.4M M_{0H}^{*} Z.0M \cdot Z.1L
 V_{A}^{*} Z.0M \cdot Z.1L
 V_{A}^{*} Z.0M \cdot Z.1L
 V_{A}^{*} Z.0M \cdot Z.1L

- 7. It takes 83 mL of a 0.45 M NaOH solution to neutralize 235 mL of an HCl solution.
 - a. Write the neutralization reaction.

= 48.65mL

Dindicator for end point

b. What is the concentration of the HCl solution?

 $235mL \cdot M_{H+} = 83mL \cdot 0.45M$ (Mm+ = 0.16M)

- A student is given a 15 mL sample of acetic acid and asked to determine the concentration of the acid by titration. The student uses a standard 0.20 M NaOH and phenolphthalein. The image below shows the buret before the titration begins and at the equivalence point.
 - a. Use the following picture to identify the volume of NaOH delivered in the titration. 49.38 0.73

equivalence .

(MH1=0.65M

b. Calculate the concentration of the acetic acid.

c. What is the purpose of phenolphthalein in a titration?