

1. Identify each description as an acidic solution (A), a basic solution (B) or a neutral solution (N).

B 1. tastes bitter
B
4. has a $\mathrm{pH}>7.0$
B
7. neutralizes HCl
10.turns cabbage juice blue/green \qquad 13
$11 .[\mathrm{OH}-]=1.0 \times 10^{-1} \mathrm{M}$
a 3. neutralizes NaOH
a. $6 .[\mathrm{H}+]=1.0 \times 10^{-4} \mathrm{M}$

N9. Has a $\mathrm{pOH}=7.0$
Q 12. $\mathrm{Has}[\mathrm{H}+]>[\mathrm{OH}-]$
2. What does pH measure? how acidiclbasic

$$
\text { amount of }\left(\mathrm{Ht}^{+}+\mathrm{OH}^{-}\right. \text {ions }
$$

3. What is the difference between how Bronsted-Lowry define acids and bases versus Lewis?

$$
\begin{aligned}
& \text { en how Bronsted-Lowry define acids and bases versus Lewis? } \\
& \text { acid } \rightarrow \text { accept } \underset{(\text { eld }}{\text { act })} \text { (on pair, } H^{+}
\end{aligned}
$$

4. Identify the acids) and bases) in the following reaction:

$$
\begin{aligned}
& \text { base } \left.\rightarrow \text { accept } y^{+}, \text {donate electron pair }(8,2) \text { (}\right) ~
\end{aligned}
$$

$$
\begin{array}{ccc}
\mathrm{H}_{2} \mathrm{SO}_{4} \\
\text { aced } & +\mathrm{H}_{2} \mathrm{O} \\
\text { base } & \rightarrow \mathrm{HSO}_{4}^{-} & +\mathrm{H}_{3} \mathrm{O}^{+} \\
& \text {C.base } & \text { C. a }
\end{array}
$$

C. base
c. acid
5. Complete the following charts:

pH	pOH	$\left[\mathrm{H}^{+}\right]$	$\left[\mathrm{H}^{-}\right]$	Acid/Base
2	12	1×10^{-2}	1×10^{-12}	acid
3	11	1×10^{-3}	1×10^{-11}	acid
10	4	1×10^{-10}	1×10^{-4}	base
13	13	1×10^{-1}	1×10^{-13}	acid
13	5	1×10^{-13}	1×10^{-9}	1×10^{-5}
9	6	1×10^{-8}	base	
8	1×10^{-6}	base		

pH	pOH	$\left[\mathrm{H}^{+}\right]$	$[\mathrm{OH}]$	Acid/Base
114	2.6	3.98×10^{-12}	2.51×10^{-3}	base
5.8	8.2	1.58×10^{-6}	6.31×10^{-9}	aud
9.9	4.1	1.26×10^{-10}	7.94×10^{-5}	base
1.30	12.7	5.0×10^{-2}	2×10^{-13}	acid
4.82	9.18	1.50×10^{-5}	6.67×10^{-10}	acid
10.10	3.9	8.00×10^{-11}	1.26×10^{-4}	base

6. How many liters of 3.4 M HI will be required to reach the equivalence point with 2.1 L of 2.0 M KOH ?

$$
\begin{array}{ll}
V_{A}=7 & V_{B}=2.1 L \\
M_{H+}=3.4 M & M_{O H}=2.0 M
\end{array} \quad \begin{aligned}
& V_{A}=2.0 M \cdot 2.1 \mathrm{~L} \\
& V_{A}=1.24 L
\end{aligned}
$$

7. It takes 83 mL of a 0.45 M NaOH solution to neutralize 235 mL of an HCl solution.
a. Write the neutralization reaction.

$$
\begin{gathered}
\left.\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\begin{array}{c}
\mathrm{HOH} \\
\mathrm{H}_{2} \mathrm{O}
\end{array}\right) . \mathrm{NO}
\end{gathered}
$$

b. What is the concentration of the HCl solution?

$$
\begin{array}{lll}
V_{A}=235 \mathrm{~mL} & V_{D}=83 \mathrm{~mL} & 235 \mathrm{~mL} \cdot M_{H+}=83 \mathrm{~mL} \cdot 0.45 \mathrm{M} \\
M_{\text {Al }}= & M_{O H}=0.45 \mathrm{M} & M_{\text {L }}=016 \mathrm{M}
\end{array}
$$

8. A student is given a 15 mL sample of acetic acid and asked to determine the concentration of the acid by titration. The student uses a standard 0.20 M NaOH and phenolphthalein. The image below shows the buret before the titration begins and at the equivalence point.
a. Use the following picture to identify the volume of NaOH delivered in the titration.

$$
\begin{aligned}
& 49.38-0.73 \\
&=48.65 \mathrm{~mL}
\end{aligned}
$$

b. Calculate the concentration of the acetic acid.

$$
(15 m L) \cdot N N_{H t}=(48.6 \% \mathrm{mc})(0.20 N)
$$

c. What is the purpose of phenolphthalein in a titration?

$$
M=06
$$

4Dindicator for end point

